Lissajous Knots and Knots with Lissajous Projections

نویسندگان

  • Jim Hoste
  • Laura Zirbel
چکیده

Knots in R which may be parameterized by a single cosine function in each coordinate are called Lissajous knots. We show that twist knots are Lissajous knots if and only if their Arf invariants are zero. We further prove that all 2-bridge knots and all (3, q)-torus knots have Lissajous projections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling Lissajous and Fourier Knots

A Lissajous knot is one that can be parameterized as K(t) = (cos(nxt+ φx), cos(nyt+ φy), cos(nzt+ φz)) where the frequencies nx, ny , and nz are relatively prime integers and the phase shifts φx, φy and φz are real numbers. Lissajous knots are highly symmetric, and for this reason, not all knots are Lissajous. We prove several theorems which allow us to place bounds on the number of Lissajous k...

متن کامل

Poncelet’s theorem and Billiard knots

Let D be any elliptic right cylinder. We prove that every type of knot can be realized as the trajectory of a ball in D. This proves a conjecture of Lamm and gives a new proof of a conjecture of Jones and Przytycki. We use Jacobi’s proof of Poncelet’s theorem by means of elliptic functions. keywords: Poncelet’s theorem, Jacobian elliptic functions, Billiard knots , Lissajous knots, Cylinder kno...

متن کامل

ar X iv : 0 90 8 . 01 53 v 1 [ m at h . G T ] 2 A ug 2 00 9 On Fibonacci knots

We show that the Conway polynomials of Fibonacci links are Fibonacci polynomials modulo 2. We deduce that, when n 6≡ 0 (mod 4) and (n, j) 6= (3, 3), the Fibonacci knot F (n) j is not a Lissajous knot. keywords: Fibonacci polynomials, Fibonacci knots, continued fractions

متن کامل

Geometrical and Graphical Representations Analysis of Lissajous Figures in Rotor Dynamic System

This paper provides a broad review of the state of the art in Lissajous curve techniques, with particular regard to rotating machinery. Lissajous figure is a subject too wide-ranging to allow a comprehensive coverage of all of the areas associated with this field to be undertaken, and it is not the authors' intention to do so. However, a general overview of the broader issues of Lissajous curve...

متن کامل

A survey on bivariate Lagrange interpolation on Lissajous nodes

This article is a survey on recent research on bivariate polynomial interpolation on the node points of Lissajous curves. The resulting theory is a generalization of the generating curve approach developed for Lagrange interpolation on the Padua points. After classifying the different types of Lissajous curves, we give a short overview on interpolation and quadrature rules defined on the node p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008