Lissajous Knots and Knots with Lissajous Projections
نویسندگان
چکیده
Knots in R which may be parameterized by a single cosine function in each coordinate are called Lissajous knots. We show that twist knots are Lissajous knots if and only if their Arf invariants are zero. We further prove that all 2-bridge knots and all (3, q)-torus knots have Lissajous projections.
منابع مشابه
Sampling Lissajous and Fourier Knots
A Lissajous knot is one that can be parameterized as K(t) = (cos(nxt+ φx), cos(nyt+ φy), cos(nzt+ φz)) where the frequencies nx, ny , and nz are relatively prime integers and the phase shifts φx, φy and φz are real numbers. Lissajous knots are highly symmetric, and for this reason, not all knots are Lissajous. We prove several theorems which allow us to place bounds on the number of Lissajous k...
متن کاملPoncelet’s theorem and Billiard knots
Let D be any elliptic right cylinder. We prove that every type of knot can be realized as the trajectory of a ball in D. This proves a conjecture of Lamm and gives a new proof of a conjecture of Jones and Przytycki. We use Jacobi’s proof of Poncelet’s theorem by means of elliptic functions. keywords: Poncelet’s theorem, Jacobian elliptic functions, Billiard knots , Lissajous knots, Cylinder kno...
متن کاملar X iv : 0 90 8 . 01 53 v 1 [ m at h . G T ] 2 A ug 2 00 9 On Fibonacci knots
We show that the Conway polynomials of Fibonacci links are Fibonacci polynomials modulo 2. We deduce that, when n 6≡ 0 (mod 4) and (n, j) 6= (3, 3), the Fibonacci knot F (n) j is not a Lissajous knot. keywords: Fibonacci polynomials, Fibonacci knots, continued fractions
متن کاملGeometrical and Graphical Representations Analysis of Lissajous Figures in Rotor Dynamic System
This paper provides a broad review of the state of the art in Lissajous curve techniques, with particular regard to rotating machinery. Lissajous figure is a subject too wide-ranging to allow a comprehensive coverage of all of the areas associated with this field to be undertaken, and it is not the authors' intention to do so. However, a general overview of the broader issues of Lissajous curve...
متن کاملA survey on bivariate Lagrange interpolation on Lissajous nodes
This article is a survey on recent research on bivariate polynomial interpolation on the node points of Lissajous curves. The resulting theory is a generalization of the generating curve approach developed for Lagrange interpolation on the Padua points. After classifying the different types of Lissajous curves, we give a short overview on interpolation and quadrature rules defined on the node p...
متن کامل